Telegram Group & Telegram Channel
Перечислите гиперапараметры, которые можно настроить у классического многослойного перцептрона

▪️Количество скрытых слоёв
Это напрямую влияет на сложность модели. Большее количество слоёв может улучшить способность модели к изучению сложных зависимостей, но это также увеличивает риск переобучения.

▪️Количество нейронов в каждом слое
Чем больше нейронов, тем больше информации может обрабатываться, но это также увеличивает количество параметров, которые необходимо обучить.

▪️Функция активации
Можно использовать, например, ReLU.

▪️Скорость обучения (learning rate)
Один из ключевых гиперпараметров, определяющий, насколько быстро обновляются веса на каждом шаге обучения.

▪️Число эпох (epochs)
Определяет, сколько раз модель пройдёт по всему набору данных во время обучения.

▪️Размер батча (batch size)
Определяет, сколько примеров из обучающего набора данных используется для обновления весов за один раз.

▪️Оптимизатор
Классические MLP могут использовать такие оптимизаторы, как Stochastic Gradient Descent (SGD) или более продвинутые, например, Adam или RMSprop.

#глубокое_обучение



tg-me.com/ds_interview_lib/647
Create:
Last Update:

Перечислите гиперапараметры, которые можно настроить у классического многослойного перцептрона

▪️Количество скрытых слоёв
Это напрямую влияет на сложность модели. Большее количество слоёв может улучшить способность модели к изучению сложных зависимостей, но это также увеличивает риск переобучения.

▪️Количество нейронов в каждом слое
Чем больше нейронов, тем больше информации может обрабатываться, но это также увеличивает количество параметров, которые необходимо обучить.

▪️Функция активации
Можно использовать, например, ReLU.

▪️Скорость обучения (learning rate)
Один из ключевых гиперпараметров, определяющий, насколько быстро обновляются веса на каждом шаге обучения.

▪️Число эпох (epochs)
Определяет, сколько раз модель пройдёт по всему набору данных во время обучения.

▪️Размер батча (batch size)
Определяет, сколько примеров из обучающего набора данных используется для обновления весов за один раз.

▪️Оптимизатор
Классические MLP могут использовать такие оптимизаторы, как Stochastic Gradient Descent (SGD) или более продвинутые, например, Adam или RMSprop.

#глубокое_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/647

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Библиотека собеса по Data Science | вопросы с собеседований from br


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA